Category Archives: cloud

Hybrid cloud recent solutions from Microsoft and VMWare – 2 different ends of the hybrid cloud spectrum

Public clouds have grown tremendously over the last few years and there are very few companies who do not use public cloud at this point. Even traditional enterprises with in-house data centers have some presence in the public cloud. I was looking at Amazon’s re:Invent conference details and I was amazed by the number of new services and enhancements that were announced this year.  It is very difficult for private clouds to keep up in pace with the new features of public cloud. There is no doubt that public clouds will overtake private clouds in the long term. Private clouds still have a wide deployment and there will be enough use cases for quite some time to deploy private cloud. The use cases includes regulated industries, compute needed in remote locations not having access to public cloud and some specialized requirements that public clouds cannot meet. For some enterprises, private cloud would make more sense from a costing perspective. Having hybrid cloud option is a safe bet for most companies as it provides the best of both worlds. I saw 2 recent announcements in hybrid cloud that captured my attention. One is Azure stack that allows running Azure stack in private cloud. Another is VMWare cloud on AWS that allows running entire VMware stack in AWS public cloud. I see these two services as 2 ends of the hybrid cloud spectrum. In 1 case, public cloud infrastructure software is made to run on private cloud(Azure stack) and in another case, private cloud infrastructure software is made to run on public cloud(Vmware cloud on AWS). In this blog, I have tried to capture more details on these 2 services.

Hybrid cloud

There are predominantly 2 options currently to run Private cloud. 1 option is to use vendor based cloud management software along with hardware from same vendor. Cisco UCS is an example in this category where customers get to use UCS servers integrated with networking and storage along with management software from Cisco. This provides a tightly integrated solution. Another option is to use Openstack as a cloud orchestration system and use server, networking and storage hardware from any vendor. Both these kinds of solutions works well in private cloud. For enterprises having private cloud, there always are use-cases where few services makes more sense in public cloud. A classic example is a development team using public cloud for 1 of their development projects for agility reasons. Once the development is complete, operations team has a choice to deploy the application in either private or public cloud. There is also the use case where current applications deployed in private cloud needs to be scaled by using public cloud for elasticity reasons. In either of the cases, we need a solution that allows easier migration of applications along with their policies between the private and public cloud.

Following are some important requirements of hybrid cloud:

  • Having a common management software to manage public and private clouds.
  • Ability to move applications seamlessly between the clouds.
  • Secure connectivity between the clouds.

Microsoft Azure stack

Azure stack is a hybrid cloud platform product from Microsoft that allows managing the private cloud with the same Azure public cloud software stack.

Following picture from Azure stack link shows the components of Azure stack:


Following are some details on the solution:

  • Azure stack takes some of the components of Microsoft Azure public cloud to manage private cloud. To start with, Azure stack will support limited services in private cloud when compared to Azure public cloud.
  • Cloud infrastructure layer is hardware and basic system software for running compute, storage and networking. In the initial release, Azure stack will be provided as turnkey integrated solution with hardware integrated from Dell, HP and Lenovo. It looks like more vendors will be added in future. The reason to support limited vendors is to achieve tight integration and simplify the deployment solution.
  • Azure infrastruture layer sits on top of cloud infrastructure and the Azure services layer interacts with Azure infrastructure layer.
  • The first technical preview release was done in early 2016 and the second technical preview release was done in late 2016. GA release is planned middle of 2017.
  • The entire Azure stack runs currently on a single node. The plan is to make this distributed in future.

Following are some of my general thoughts on Azure stack:

  • Public cloud providers typically did not focus on private clouds since that would eat into their pie. This is a good move by Microsoft to facilitate hybrid cloud and the gradual move to public cloud.
  • The pricing and licensing model of Azure stack is not clear. Since the plan is to have a turnkey integrated solution with few vendors, there has to be some form of licensing agreement with multiple parties.
  • It is not clear how the OEM vendors providing cloud infrastructure can differentiate their solutions.
  • Having a restricted cloud infrastructure vendor list will make this solution not useful for private clouds using legacy hardware. It will be good if the cloud stack can provide common API that can allow any hardware vendor that supports the API to be managed by the Azure stack cloud software. To some extent, Openstack is following this model. It will be good if Azure stack can do the same so that there is no restriction on the vendor list.
  • AWS and Google cloud have not introduced private cloud management solutions till now. As mentioned earlier, there are use cases where access to public cloud is not possible and private cloud would be a better fit. AWS greengrass IoT solution is the closest private cloud like solution from AWS that I have seen where local IoT resources are used for compute when needed.

VMWare cloud on AWS

This solution allows the entire VMWare virtualization stack(including compute, storage and networking) to run in AWS public cloud. The solution is provided by VMWare and is a joint collaboration between VMWare and Amazon AWS. For enterprises using VMWare stack to manage their private cloud infrastructure, they can use the same software stack when moving some of their services to AWS public cloud.

Following picture from VMWare link shows the components of this solution:


Following are some details on the solution:

  • All the core components of VMWare stack including Vsphere, Virtual SAN, NSX, ESX and Vcenter runs in AWS infrastructure.
  • AWS typically uses Xen hypervisor for virtualization and VMWare uses ESX for virtualization. To do this integrated solution, ESX runs in AWS baremetal. There is no Xen hypervisor in this integrated solution.
  • Vcenter is used for management across on-premise as well as in AWS. In 1 of the joint demos, VMWare shows seamless VM migration between on-premise cloud and AWS cloud.
  • VMs deployed in AWS public cloud can use all the AWS services like storage, database, analytics etc. This makes this solution very attractive.
  • This service will be operated and managed by VMWare. Both AWS and VMWare have made changes to their stack for this integrated solution.
  • The solution is currently in Technical preview phase and general availability is expected middle of 2017.

Following are some of my general thoughts on this VMware cloud on AWS solution:

  • VMWare has tried different strategies to get a foothold into public and hybrid cloud. vCloud hybrid service was 1 of their unsuccessful attempts earlier on this. This solution will benefit both VMWare and AWS, the bigger benefit lies for AWS.
  • AWS has not sold baremetal servers till now. There are companies like Packet that provides baremetal servers. There are use cases for baremetal like non-virtualized scenarios or pure container based solutions where baremetal servers would help. It will be interesting to see if AWS would sell these baremetal servers in future. It is not clear why AWS has not provided bare metal servers till now, 1 possible reason could be that it would take away some of its differentiators.
  • Microsoft has a private cloud enterprise solution with hyperv and public cloud solution with Azure public stack. Microsoft can provide a similar integrated solution that allows Microsoft’s private cloud stack to run on its Azure public cloud. It is not sure if Microsoft will venture into this.


Both solutions described above are good hybrid cloud solutions that eases movement to public cloud. Both these hybrid cloud solutions are favorable more for public cloud rather than private cloud. Even though these solutions helps private clouds temporarily, long term benefits lies with public cloud. It will be good to have cloud management software that is cloud agnostic so that multiple cloud vendors can be used and there is no vendor lock-in. Terraform and Cliqr are some solutions catered to this space.


Baremetal cloud using Packet

Typical Opensource demo applications comes packaged as a Vagrant application which starts a bunch of VMs and does automatic provisioning. I have a Windows machine with Virtualbox and VMWare player installed. Since Virtualbox does not support nested virtualization with 64 bit VMs(More details can be found in my previous blogs on Virtualbox and VMWare player), I use VMWare player to try out demo applications that needs 64 bit VMs. The demo applications typically run on Linux, so running them on Windows with Virtualbox is ruled out. I was recently trying this Mantl project for deploying distributed microservices and I found that it was very slow to run in VMWare player with nested virtualization. I tried to run the application in AWS and I found that AWS does not support nested virtualization(More details can be found here). Then I tried out Google cloud. Even though Google cloud supports nested virtualization, hardware virtualization is disabled on the guest VMs and this prevents running 64 bit VMs inside Google cloud VMs. After I ran out of these options, I stumbled upon the possibility of using baremetal cloud. I used baremetal cloud from Packet and it worked great for my usecase mentioned above. Though this is not a typical use case, I was very happy with the performance and the possibilities that this provides. In this blog, I will share the use cases for baremetal cloud and my experiences with using Packet service.

Bare metal cloud Use case

Typical cloud providers like Amazon, Google, Digitalocean, Microsoft rent out VMs as part of their compute offering. These VMs run on top of a hypervisor. Though the user is guaranteed a specific performance, these VMs share the same resources with other VMs running on the same host machine. With bare metal cloud, the cloud provider hosts machines that the user can rent which is not shared with anyone. Cloud providers provide different configurations for bare metal and the user can choose based on their performance needs and the costing is based on the performance provided by the bare metal server. Following are some advantages that bare metal cloud provides:

Continue reading Baremetal cloud using Packet

Google Cloud – Getting started

I have used AWS for most of my Cloud related needs. Recently, I tried out Google Cloud and I will share some of my experiences with Google Cloud in this blog.

The easiest way to get started is to signup for the 60 day trial. This gives 300$ of credit to use Google Cloud for 60 days. It is necessary to register using a credit card.

Google cloud services can be accessed either using Developer’s console, CLI, SDK. It is needed to create atleast a single project to get started. First, I created a project using the Developer’s console. Developer’s console can be accessed from here.

Installing and using gcloud SDK:

Use the procedure here to install SDK.
Following are the steps that I did to install SDK in Ubuntu 14.04 VM running in Virtualbox:

Continue reading Google Cloud – Getting started

Storage Primer

Storage is a very critical component in the current IT domain. Choosing the right Storage platform and software is a critical part of a good Data center whether it is internal or external cloud. Even though I understood some Storage basics, I never ventured deep to understand the different storage technologies available. I tried to brush up my knowledge by doing some reading recently and I have tried to capture some of my reading in this blog.

Storage device(HDD vs RAID vs SSD)

HDD – Hard disk drive consists of a spindle with disks.

RAID(Redundant array of Independent disks) – Combines multiple HDDs to provide more reliability, throughput and capacity.

SSD – Solid state drive is a memory chip and it has no moving parts.

Storage device performance is measured in terms of throughput(data transfer rate), latency(time it takes to start a IO task) and IOPS(IO operations per second).  SSD scores better over HDD on all the performance parameters. RAID provides comparable throughput and IOPS as SSD, but SSD provides better latency. The only disadvantage of SSD is the much higher cost.

Continue reading Storage Primer

Cloud policy – Congress and Opflex

Recently, I saw a lot of press on Cisco’s Opflex protocol that allows a declarative policy model to control a physical or virtual device. There were discussions around if the Opflex protocol would replace Ovsdb and Openflow. Within Openstack, there is a new project called Congress that allows for creating a policy framework within Openstack. This blog is my attempt to get into more details on Congress and Opflex and explain the relationship between them. This is mostly information gathered from different references that I have listed in the end.


Congress is a new Openstack project that is used to enforce compliance within the cloud environment. The end goal would be to integrate Congress with other cloud orchestration software as well. Compliance could be needed because of Government regulations, contracts between organizations, SLA enforcement etc. Following picture illustrates the need for Congress.

Continue reading Cloud policy – Congress and Opflex

Hybrid Cloud

In the recent Rightscale survey, 74% of the respondents mentioned that they have a multi-cloud strategy and 48% of the respondents are planning for hybrid clouds. The recent trend in Cloud computing after Public and Private cloud is Hybrid cloud. Hybrid cloud offers the best of Private and Public cloud in some scenarios and Enterprises seem to like that.

In this blog, I will cover the following:

  • What is Hybrid cloud and Multi-cloud?
  • Use cases for Hybrid cloud.
  • Components of Hybrid cloud and design considerations – Cloud management, Network connectivity, Application portability
  • Popular Hybrid cloud providers – Rightscale and AWS, Vmware VCHS, Cisco Intercloud, Rackspace hybrid cloud, Redhat open hybrid cloud

Continue reading Hybrid Cloud

Cloud Infrastructure

In this blog, I will cover:

  • Major components of the Cloud infrastructure from hardware perspective
  • 2 models of deploying Cloud infrastructure
  • Overview of different converged infrastructure players and their solutions.
  • Deepdive into VCE converged infrastructure solution.

Major Cloud hardware components are Compute, Storage and Network. There are 2 models of building Cloud infrastructure.

  1. Build using discrete components.
  2. Buy turnkey solution called as Converged Infrastructure.

Continue reading Cloud Infrastructure